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Abstract 
Photothermographic images generated from silver 

carboxylates consist of silver particles with two distinct 
morphologies, dendritic and filamentary. The dendritic silver 
particle has the appearance of a spherical aggregate of smaller 
spheres. The filamentary particle is a solid strand of silver. Of 
particular interest for such a silver image is the covering power, 
i.e., the image density achieved per unit coverage of silver. 
Therefore, it would be useful to have the capability of 
calculating the covering power given the concentration, size, 
and morphology of the silver particles. However, to perform 
such a calculation on the complex Ag particle morphologies 
seen in the film is not a trivial matter. Some initial work was 
carried out to determine the utility of modeling the silver 
particles with simple morphologies and to provide a basis for 
modeling more complex geometries. A discussion of these 
calculations and a comparison to experimental measurements of 
covering power will be the focus of this talk. 

 

Introduction  
Images from conventional black-and-white photography 

are generated by small silver particles, which are typically in the 
form of filaments [1]. Photothermographic images generated 
from silver carboxylates might be filamentary or round. The 
round particles are typically an agglomeration of spherical 5-30 
nm diameter nanoparticles of silver and have been called 
dendrites in the literature [2]. The size and morphology of the 
silver have an impact on the absorption spectrum and thus 
impact the tone and covering power of the image.  

The simplest approximation for covering power is based on 
the Nutting model, which uses the projection area of the silver 
particles [3,4]. However, this does not give correct results 
because the actual extinction cross section for small particles is 
not equal to the geometric cross section. In order to correct for 
this, Farnell and Solman introduce a correction factor [5]. In 
order to quantify this correction factor, the absorption cross 
section of the silver particles needs to be calculated. The 
absorption cross sections of isolated silver spheres can be 
calculated directly from Mie theory [6]. The calculation for a 
cluster of noncontacting silver spheres is much more difficult, 
especially for cluster sizes that are typically observed for 
photothermographic materials [2]. Recently, code from 
Mackowski et al. has been used to calculate the extinction and 
scattering cross sections for infinite silver cylinders, linear 
chains of up to three silver spheres, and a small cubic cluster 
that consists of eight silver spheres [7]. These results show the 
importance of the distance between the silver nanoparticles.  

With the extinction cross section of the silver particles that 
make up an image, the covering power can be calculated using 
the Nutting model for the geometry of specular transmission. 
The Nutting model does not address the diffuse transmission of 
light. However, in practical situations, the total transmission is 
much more relevant. Obtaining the total transmission for a 
random distribution of particles given the extinction and 
scattering cross sections for these particles is not a trivial task. 
Assuming the particles are far enough apart to be treated 
independently, one can use a geometric optical approach to 
follow the path of the light between the scattering or absorption 
events. In this case, an accurate solution can be obtained using 
Monte Carlo Simulation [8]. However, this approach is time-
consuming and more practical approaches have typically been 
used. The most widely used approximation is the Kubelka Munk 
Theory [9]. However, this is not very applicable to media with 
high absorption. More recently, the topic of photon transmission 
in a turbid media has become of great interest in both soft 
condensed matter physics and medical diagnostics [10]. In this 
paper, we adopt the approach based on the telegrapher’s 
equation [10]. Details of this approach and the general topic of 
photon transmission in a turbid media will be addressed more 
extensively in the companion paper [11]. Here, we extend the 
work in Reference [7] to include larger clusters of silver spheres 
and use these results and the solution obtained from the 
telegrapher’s equation to perform calculations for covering 
power. 

Results and Discussion 

Cross Sections 
The calculations for extinction, scattering, and absorption 

cross sections were carried out in a manner similar to Reference 
[7]. In these calculations, no corrections were made to the 
refractive index for particle size, and code from Xu [12] was 
used in addition to the code from Mackowski et al. [13]. The 
code from Xu converges more rapidly for large separation 
distances. Both codes give the same results except at very short 
distances where Xu’s code does not converge as well. 
Therefore, the Mackowski et al. code was used in the short to 
mid range separation distances, and the Xu code was used in the 
mid to longer separation distances. 

The results for randomly oriented 3 × 3 × 3 cubic arrays of 
twenty-seven 10-nm-diameter silver spheres at various 
separation distances are shown in Fig. 1. The separation distance 
is the distance between surfaces for the nearest-neighbor spheres 
in a cluster. It is clear that these clusters are still too small to 
give a neutral tone. However, they do absorb at longer 
wavelengths and with less scattering than does a solid sphere of 
equivalent volume. Calculations for a dendrite of a more 
desirable size, such as a cluster of several hundred 10-nm-



 

 

diameter spheres, would require very extensive computing 
power, which is beyond the scope of this study.  
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Figure 1. (solid lines) Calculated Qabs and Qscatt spectra for randomly 

oriented 3 × 3 × 3 cubic arrays of twenty-seven 10-nm-diameter silver 

spheres at various separation distances. Qabs and Qscatt are the calculated 

absorption and scattering cross sections normalized by the geometric 

cross section of a single sphere of equivalent volume, i.e., 30 nm in 

diameter. (dotted line) Calculated Qabs  and Qscatt spectra for a single 30-

nm-diameter silver sphere. 

 Covering Power Calculations 
Of particular interest for a silver image is its covering 

power, which is the image density achieved per unit coverage of 
silver. In a photothermographic media based on silver 
carboxylate, the latent image catalyzes the chemical reduction of 
silver carboxylate to neutral silver atoms (Ag0). The covering 
power (CP) will be defined as follows: 

 
CP = (D – D0) / Ag0 Wt, 

 
where Ag0 Wt is the amount of Ag0 per unit area of the imaged 
film. D – D0 is the image density contribution by the Ag0 
particles. D is the image density of the processed film. D0 is the 
contribution to the density by components other than Ag0 such 
as the base, silver halide, silver carboxylates, and dyes. This can 
be taken as the unprocessed density assuming there are no heat-
bleachable dyes or thermally generated dyes, or it can be taken 

as the processed Dmin, assuming there is negligible contribution 
from fog centers. 

The covering power was obtained by using the calculated 
spectra for the absorption and scattering cross sections as input 
to the following relationship for total transmission [11]: 

 
 

( )
( )( )

]exp[

]sinh[)(]cosh[2

]sinh[)()]cosh[])(exp[(]exp[
22222

2

d

qdaqqdqaq

qdaqqddqadqs
T

ε
ηηε

ηεεηεεη

−+
++−

+−−+−=  (1) 

 
where, 

a = σA n 
s = σS n 
ε = a+s 
q2 = 3a(a+βs) 

 
a, s, and ε are the absorption, scattering, and extinction 
coefficients. σA and σS are the absorption and scattering cross 
sections, d is the layer thickness, and n is the number of silver 
particles per unit volume. η is the average z-component 
magnitude of the unit velocity vectors for the diffusely reflected 
and transmitted photons. For the calculations in this paper, η 
and the constant β are set to 1/2.  

Equation (1) was derived using the telegrapher’s 
differential equation to model the photon diffusion in a turbid 
media [10]. Reflections at the interfaces were ignored in this 
calculation. Details of the calculation can be found in Reference 
[11]. The resulting total transmission spectra was used to 
calculate a visual density, which is taken to be –Log (Y/Yn), 
where Y is the CIE Y tristimulus value for the transmitted light, 
and Yn is the CIE Y tristimulus value for the incident beam [14]. 
The D65 illuminant was used for these calculations. 

Figure 2 shows the calculated covering power for a 20-µm-
thick layer containing randomly dispersed silver spheres as a 
function of the sphere diameter at a constant total Ag loading of 
1.9 g/m2. The covering power in the case of specular 
transmission was calculated by using the extinction cross section 
in the Nutting formula. The covering power in the case of total 
transmission was calculated by using Eq.1.The cross sections for 
the spheres were calculated using Mie theory with no size 
correction in the Ag refractive index values of Hagemann et al. 
[7] and a refractive index of n = 1.481 assumed for the medium. 
Figure 2 shows that the optimal diameter for a silver sphere is 
between 100 and 120 nm. 

The typical covering power for photothermographic media 
is between 2 and 3. Because the covering power reached for 
total transmission in Fig. 2 is not this high for any diameter, 
these results suggest that solid silver spheres are not the optimal 
morphology for covering power.  

The covering power for the cubic array of twenty-seven 
10-nm silver spheres was calculated for several separation 
distances (Fig. 3). In this case, there is minimal diffuse 
transmission. The covering power increases as the distance 
between the spheres in the array decreases. The covering power 
increases dramatically as the separation distance decreases 
below the radius of the spheres. In this regime, the covering 
power is greater than that for the sphere of equivalent volume 



 

 

(30-nm diameter), which has a covering power of about 0.4 
(Fig. 2). The results suggest that a cluster of spheres with 
sufficiently small separation distance has a better morphology 
than do solid spheres. Ideally, larger clusters where light 
scattering plays a larger role should be studied to verify this 
conclusion. 
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Figure 2. Calculated covering power for solid silver spheres dispersed 

randomly in a 20 µm layer with a silver loading of 1.9 g/m2. 
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Figure 3. Calculated covering power for randomly oriented 3 × 3 × 3 cubic 

clusters of twenty-seven 10-nm-diameter silver spheres in a 20-µm layer 

with a silver loading of 1.9 g/m2.  

Summary 
The covering power was calculated for solid spheres and 

cubic arrays of twenty-seven 10-nm silver spheres. The 
calculations were performed using theoretical cross sections and 
a relationship for total transmission derived from the 

telegrapher’s equation. The absorption and scattering cross 
sections were calculated using Mie theory, code from 
Mackowski et al., and code from Xu. The total transmission was 
estimated using Eq. (1) for a silver loading of 1.9 g/m2. The CIE 
Y tristimulus values were calculated from the transmission 
spectra, which are used to derive the visual density. The results 
suggest that a cluster of small silver spheres can result in a 
higher covering power than can a single silver sphere of 
equivalent volume. Therefore, these results give some indication 
why the dendritic silver particles in photothermographic 
materials are ideal. 
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